Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Cureus ; 16(3): e56004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606267

RESUMO

Background Medication errors are common, especially by new trainees in primary care settings. Our study aimed at reducing the rate of prescription error in the pediatric outpatient department (OPD) of a secondary healthcare center in suburban north India using a quality improvement methodology. Methods Based on a survey and focused group discussion (FGD) involving all stakeholders, the identified problems and difficulties faced during outpatient prescriptions, interventions, and outcome parameters were drafted. The primary outcome measure was the prescription error rate evaluated by a senior resident (SR) of pediatrics, and the secondary outcome measures included the frequency of antibiotic prescriptions and investigations. Intervention Two cycles of Plan-Do-Study-Act (PDSA) were conducted on accessible drug formularies and standard treatment protocols for common pediatric conditions. Results The mean baseline prescription error was 72.2% (95% confidence interval (CI): 63.2-81.1). After the implementation of the first PDSA cycle, the mean error rate was 46.5% (95% CI: 36.6-56.5). There were eight consecutive points of prescription error below the control limit (63.2% and 81.1%) of the baseline. The PDSA-2 cycle showed the same shift to below the control limit (36.6% and 56.5%). The mean error rate found at the end of the PDSA-2 cycle was 22.5% (95% CI 15.7-29.5). There was no clinically significant difference in the number of investigations or antibiotics prescribed. Conclusion The application of standardized drug formularies and standard treatment protocols (STPs) can help reduce prescription errors, especially in a primary care setting. Expansion of such techniques to other centers could be particularly useful.

2.
Cureus ; 16(2): e54502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38516462

RESUMO

Enteric fever typically displays symptoms like high fever, abdominal pain, constipation, and headaches, primarily affecting the digestive system. While it is commonly seen as a gastrointestinal infection, it can also lead to rare but significant cardiovascular issues. There have been only a few reported cases of enteric fever causing heart manifestations. We present a case of a young male with enteric fever-induced myocarditis, which, due to its rarity, can be challenging to diagnose and is essentially a diagnosis of exclusion. Cardiac MRI (CMR) is crucial for diagnosis, supported by ECG, echocardiograms, and troponin levels. The treatment involves standard approaches for cardiomyopathy, including angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, and diuretics. However, our patient presented as a case of asymptomatic myocarditis and fully recovered with treatment without any long-lasting heart problems. Our study aims to contribute to the limited body of knowledge on heart-related complications of enteric fever, raising awareness among clinicians of such presentations in enteric fever cases.

3.
Cureus ; 16(2): e54611, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38524012

RESUMO

This study presents a unique case of concurrent salmonella and Leptospira meningitis in a 20-year-old woman with no prior medical history. Coinfection with endemic pathogens is plausible, especially in regions like Pakistan. While Salmonella meningitis is uncommon, it presents a significant medical emergency, particularly in immunocompromised adults. Neuroleptospirosis, though rare, can manifest in certain cases. The patient displayed persistent high fever, confusion, irritability, and a single seizure episode. Initial tests, including blood and cerebrospinal fluid (CSF) cultures and serological examinations, detected Salmonella typhi and positive leptospiral antibodies, respectively. Leptomeningeal enhancement was confirmed by an MRI. Treatment with azithromycin, meropenem, and ceftriaxone led to improvement after seven days. She was advised to complete a 28-day course for Salmonella meningitis. This case emphasizes the importance of considering multiple infectious causes, especially in endemic regions. Timely and thorough diagnostic evaluation, followed by appropriate antimicrobial therapy, is essential for effective management. Further research is warranted to enhance understanding of the epidemiology, clinical features, and optimal treatment strategies for such dual infections.

4.
Heliyon ; 10(6): e28038, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524534

RESUMO

Herbal medicinal plants have been used for centuries in traditional medicine, and it is interesting to see how modern research has identified the active compounds responsible for their therapeutic effects. The green synthesis of silver nanoparticles using herbal medicinal plants, such as Swertia chirata, is particularly noteworthy due to its antimicrobial properties. In the current study, the Swertia chirata plant was collected for the first time from the region of Murree, Punjab, Pakistan. After collection, extracts were prepared in different solvents (ethanol, methanol, chloroform, and distilled water), and silver nanoparticles were synthesized by reducing silver nitrate (AgNO3). The UV-visible spectrophotometer, SEM, and EDX were used to characterize the synthesized nanoparticles in terms of their size and shape. The phytochemical analysis of crude extract was performed to determine the presence of different kinds of phytochemicals. The antibacterial activity of plant extracts and the silver nanoparticles were then assessed using the agar well diffusion method against various pathogenic bacteria. The results showed that the plant contains several phytochemicals with remarkable antioxidant potential. The antibacterial analysis revealed that silver nanoparticles and the plant extracts exhibited a significant zone of inhibition against human pathogenic bacteria (Escherichia coli, S. capitis, B. subtilis, and Pseudomonas aeruginosa) as compared to the cefixime and norfloxacin. This implies that the nanoparticles have the potential to be used in nano-medicine applications, such as drug delivery systems, as well as for their antibacterial, antifungal, and antiviral activities. Additionally, the development and application of materials and technologies at the nanometer scale opens possibilities for the creation of novel drugs and therapies. Overall, the study highlights the promising potential of herbal medicinal plants found in Murree, Punjab, Pakistan, and green-synthesized silver nanoparticles in various fields of medicine and nanotechnology.

5.
BMC Microbiol ; 24(1): 74, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454332

RESUMO

OBJECTIVE: Multi-drug resistance (MDR) has notably increased in community acquired uropathogens causing urinary tract infections (UTIs), predominantly Escherichia coli. Uropathogenic E. coli causes 80% of uncomplicated community acquired UTIs, particularly in pre-menopausal women. Considering this high prevalence and the potential to spread antimicrobial resistant genes, the current study was conducted to investigate the presence of clinically important strains of E. coli in Pakistani women having uncomplicated cystitis and pyelonephritis. Women belonging to low-income groups were exclusively included in the study. Seventy-four isolates from urine samples were processed, phylotyped, and screened for the presence of two Single Nucleotide Polymorphisms (SNPs) particularly associated with a clinically important clonal group A of E. coli (CgA) followed by antibiotic susceptibility testing and genome sequence analysis. RESULTS: Phylogroup B2 was most prevalent in patients and 44% of isolates were positive for the presence of CgA specific SNPs in Fumarate hydratase and DNA gyrase subunit B genes. Antibiotic susceptibility testing showed widespread resistance to trimethoprim-sulfamethoxazole and extended-spectrum beta-lactamase production. The infection analysis revealed the phylogroup B2 to be more pathogenic as compared to the other groups. The genome sequence of E. coli strain U17 revealed genes encoding virulence, multidrug resistance, and host colonization mechanisms. CONCLUSIONS: Our research findings not only validate the significant occurrence of multidrug-resistant clonal group A E. coli (CgA) in premenopausal Pakistani women suffering from cystitis and pyelonephritis but also reveal the presence of genes associated withvirulence, and drug efflux pumps. The detection of highly pathogenic, antimicrobial-resistant phylogroup B2 and CgA E. coli strains is likely to help in understanding the epidemiology of the pathogen and may ultimately help to reduce the impact of these strains on human health. Furthermore, the findings of this study will particularly help to reduce the prevalence of uncomplicated UTIs and the cost associated with their treatment in women belonging to low-income groups.


Assuntos
Cistite , Infecções por Escherichia coli , Pielonefrite , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Feminino , Escherichia coli , Infecções por Escherichia coli/diagnóstico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Paquistão/epidemiologia , Infecções Urinárias/diagnóstico , Resistência a Múltiplos Medicamentos , Cistite/tratamento farmacológico
6.
Cardiovasc Diabetol ; 23(1): 99, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500154

RESUMO

BACKGROUND: Randomized controlled trials and real-world studies suggest that combination therapy with sodium-glucose transport protein 2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) is associated with improvement in fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), systolic blood pressure (SBP), body mass index (BMI), and total cholesterol levels. However, a systematic review of available real-world evidence may facilitate clinical decision-making in the real-world scenario. This meta-analysis assessed the safety and effectiveness of combinations of SGLT2is + GLP-1RAs with a focus on their cardioprotective effects along with glucose-lowering ability in patients with type 2 diabetes mellitus (T2DM) in a real-world setting. METHODS: Electronic searches were performed in the PubMed/MEDLINE, PROQuest, Scopus, CINAHL, and Google Scholar databases. Qualitative analyses and meta-analyses were performed using the Joanna Briggs Institute SUMARI software package and Review Manager v5.4, respectively. RESULTS: The initial database search yielded 1445 articles; of these, 13 were included in this study. The analyses indicated that SGLT2is + GLP-1RAs combinations were associated with significantly lower all-cause mortality when compared with individual therapies (odds ratio [95% confidence interval [CI] 0.49 [0.41, 0.60]; p < 0.00001). Significant reductions in BMI (- 1.71 [- 2.74, - 0.67]; p = 0.001), SBP (- 6.35 [- 10.17, - 2.53]; p = 0.001), HbA1c levels (- 1.48 [- 1.75, - 1.21]; p < 0.00001), and FPG (- 2.27 [- 2.78, - 1.76]; p < 0.00001) were associated with the simultaneous administration of the combination. Changes in total cholesterol levels and differences between simultaneous and sequential combination therapies for this outcome were not significant. CONCLUSION: This systematic review and meta-analysis based on real-world data suggests that the combination of SGLT2is + GLP-1RAs is associated with lower all-cause mortality and favorable improvements in cardiovascular, renal, and glycemic measurements. The findings drive a call-to-action to incorporate this combination early and simultaneously in managing T2DM patients and achieve potential cardiovascular benefits and renal protection.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , 60650 , Hemoglobinas Glicadas , Glicemia/metabolismo , Colesterol , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
7.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399427

RESUMO

The current study was conducted to examine the possible advantages of Heydotis corymbosa (L.) Lam. extract nanogel as a perspective for enhanced permeation and extended skin deposition in psoriasis-like dermatitis. Optimised nanophytosomes (NPs) were embedded in a pluronic gel base to obtain nanogel and tested ex vivo (skin penetration and dermatokinetics) and in vivo. The optimised NPs had a spherical form and entrapment efficiency of 73.05 ± 1.45% with a nanosized and zeta potential of 86.11 nm and -10.40 mV, respectively. Structural evaluations confirmed encapsulation of the drug in the NPs. Topical administration of prepared nanogel to a rat model of psoriasis-like dermatitis revealed its specific in vivo anti-psoriatic efficacy in terms of drug activity compared to the control and other formulations. Nanogel had improved skin integrity and downregulation of inflammatory cytokines. These findings suggest that developed phytoconstituent-based nanogel has the potential to alleviate psoriasis-like dermatitis with better skin retention and effectiveness.

8.
J Mol Graph Model ; 129: 108742, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38422823

RESUMO

Peroxisome proliferator-activated receptor gamma (PPAR-γ) serves as a nuclear receptor with a pivotal function in governing diverse facets of metabolic processes. In diabetes, the prime physiological role of PPAR-γ is to enhance insulin sensitivity and regulate glucose metabolism. Although PPAR-γ agonists such as Thiazolidinediones are effective in addressing diabetes complications, it is vital to be mindful that they are associated with substantial side effects that could potentially give rise to health challenges. The recent surge in the discovery of selective modulators of PPAR-γ inspired us to formulate an integrated computational strategy by leveraging the promising capabilities of both machine learning and in silico drug design approaches. In pursuit of our objectives, the initial stage of our work involved constructing an advanced machine learning classification model, which was trained utilizing chemical information and physicochemical descriptors obtained from known PPAR-γ modulators. The subsequent application of machine learning-based virtual screening, using a library of 31,750 compounds, allowed us to identify 68 compounds having suitable characteristics for further investigation. A total of four compounds were identified and the most favorable configurations were complemented with docking scores ranging from -8.0 to -9.1 kcal/mol. Additionally, the compounds engaged in hydrogen bond interactions with essential conserved residues including His323, Leu330, Phe363, His449 and Tyr473 that describe the ligand binding site. The stability indices investigated herein for instance root-mean-square fluctuations in the backbone atoms indicated higher mobility in the region of orthosteric site in the presence of agonist with the deviation peaks in the range of 0.07-0.69 nm, signifying moderate conformational changes. The deviations at global level revealed that the average values lie in the range of 0.25-0.32 nm. In conclusion, our identified hits particularly, CHEMBL-3185642 and CHEMBL-3554847 presented outstanding results and highlighted the stable conformation within the orthosteric site of PPAR-γ to positively modulate the activity.


Assuntos
Agonistas PPAR-gama , Tiazolidinedionas , Simulação de Acoplamento Molecular , Tiazolidinedionas/química , Sítios de Ligação , PPAR gama/agonistas , PPAR gama/metabolismo
9.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338420

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of cognitive and neurological problems, including Alzheimer's disease. Taxifolin is a natural phytochemical generally found in yew tree bark and has significant pharmacological properties, such as being anti-cancer, anti-inflammatory, and antioxidant. The binding affinity and inhibitory potency of taxifolin to these enzymes were evaluated through molecular docking and molecular dynamics simulations followed by the MMPBSA approach, and the results were significant. Taxifolin's affinity for binding to the AChE-taxifolin complex was -8.85 kcal/mol, with an inhibition constant of 326.70 nM. It was observed to interact through hydrogen bonds. In contrast, the BChE-taxifolin complex binding energy was observed to be -7.42 kcal/mol, and it was significantly nearly equal to the standard inhibitor donepezil. The molecular dynamics and simulation signified the observed interactions of taxifolin with the studied enzymes. The MMPBSA total free energy of binding for AChE-taxifolin was -24.34 kcal/mol, while BChE-taxifolin was -16.14 kcal/mol. The present research suggests that taxifolin has a strong ability to bind and inhibit AChE and BChE and could be used to manage neuron-associated problems; however, further research is required to explore taxifolin's neurological therapeutic potential using animal models of Alzheimer's disease.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Quercetina/análogos & derivados , Animais , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Mol Divers ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366102

RESUMO

Given the increasing effectiveness of immune-based therapies, management of their associated toxicities is of utmost importance. Cytokine release syndrome (CRS), characterized by elevated levels of cytokine, poses a significant challenge following the administration of antibodies and CAR-T cell therapies. CRS also contributes to multiple organ dysfunction in severe viral infections, notably in COVID-19. Given the pivotal role of IL-6 cytokine in initiating CRS, it has been considered a most potential therapeutic target to mitigate hyperactivated immune responses. While monoclonal antibodies of IL-6 show promise in mitigating cytokine storm, concerns about immunotoxicity persist, and small molecule IL-6 antagonists remain unavailable. The present study employed sophisticated computational techniques to identify potential hit compounds as IL-6 inhibitors, with the aim of inhibiting IL-6/IL-6R protein-protein interactions. Through ligand-based pharmacophore mapping and shape similarity in combination with docking-based screening, we identified nine hit compounds with diverse chemical scaffolds as potential binders of IL-6. Further, the MD simulation of 300 ns of five virtual hits in a complex with IL-6 was employed to study the dynamic behavior. To provide a more precise prediction, binding free energy was also estimated. The identified compounds persistently interacted with the residues lining the binding site of the IL-6 protein. These compounds displayed low binding energy during MMPBSA calculations, substantiating their strong association with IL-6. This study suggests promising scaffolds as potential inhibitors of IL-6/IL-6R protein-protein interactions and provides direction for lead optimization.

12.
Mol Divers ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305819

RESUMO

Phosphoinositide 3-kinase alpha (PI3Kα) is one of the most frequently dysregulated kinases known for their pivotal role in many oncogenic diseases. While the side effects linked to existing drugs against PI3Kα-induced cancers provide an avenue for further research, the significant structural conservation among PI3Ks makes it extremely difficult to develop new isoform-selective PI3Kα inhibitors. Embracing this challenge, we herein designed a hybrid protocol by integrating machine learning (ML) with in silico drug-designing strategies. A deep learning classification model was developed and trained on the physicochemical descriptors data of known PI3Kα inhibitors and used as a screening filter for a database of small molecules. This approach led us to the prediction of 662 compounds showcasing appropriate features to be considered as PI3Kα inhibitors. Subsequently, a multiphase molecular docking was applied to further characterize the predicted hits in terms of their binding affinities and binding modes in the targeted cavity of the PI3Kα. As a result, a total of 12 compounds were identified whereas the best poses highlighted the efficiency of these ligands in maintaining interactions with the crucial residues of the protein to be targeted for the inhibition of associated activity. Notably, potential activity of compound 12 in counteracting PI3Kα function was found in a previous in vitro study. Following the drug-likeness and pharmacokinetic characterizations, six compounds (compounds 1, 2, 3, 6, 7, and 11) with suitable ADME-T profiles and promising bioavailability were selected. The mechanistic studies in dynamic mode further endorsed the potential of identified hits in blocking the ATP-binding site of the receptor with higher binding affinities than the native inhibitor, alpelisib (BYL-719), particularly the compounds 1, 2, and 11. These outcomes support the reliability of the developed classification model and the devised computational strategy for identifying new isoform-selective drug candidates for PI3Kα inhibition.

13.
Biomedicines ; 12(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255306

RESUMO

Globally, malignancies cause one out of six mortalities, which is a serious health problem. Cancer therapy has always been challenging, apart from major advances in immunotherapies, stem cell transplantation, targeted therapies, hormonal therapies, precision medicine, and palliative care, and traditional therapies such as surgery, radiation therapy, and chemotherapy. Natural products are integral to the development of innovative anticancer drugs in cancer research, offering the scientific community the possibility of exploring novel natural compounds against cancers. The role of natural products like Vincristine and Vinblastine has been thoroughly implicated in the management of leukemia and Hodgkin's disease. The computational method is the initial key approach in drug discovery, among various approaches. This review investigates the synergy between natural products and computational techniques, and highlights their significance in the drug discovery process. The transition from computational to experimental validation has been highlighted through in vitro and in vivo studies, with examples such as betulinic acid and withaferin A. The path toward therapeutic applications have been demonstrated through clinical studies of compounds such as silvestrol and artemisinin, from preclinical investigations to clinical trials. This article also addresses the challenges and limitations in the development of natural products as potential anti-cancer drugs. Moreover, the integration of deep learning and artificial intelligence with traditional computational drug discovery methods may be useful for enhancing the anticancer potential of natural products.

14.
BMC Genomics ; 25(1): 16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166596

RESUMO

The Rhus gall aphid, Schlechtendalia chinensis, feeds on its primary host plant Rhus chinensis to induce galls, which have economic importance in medicines and the food industry. Rhus gall aphids have a unique life cycle and are economically beneficial but there is huge gap in genomic information about this group of aphids. Schlechtendalia chinensis induces rich-tannin galls on its host plant and is emerging as a model organism for both commercial applications and applied research in the context of gall production by insects. Here, we generated a high-quality chromosome-level assembly for the S. chinensis genome, enabling the comparison between S. chinensis and non-galling aphids. The final genome assembly is 344.59 Mb with 91.71% of the assembled sequences anchored into 13 chromosomes. We predicted 15,013 genes, of which 14,582 (97.13%) coding genes were annotated, and 99% of the predicted genes were anchored to the 13 chromosomes. This assembly reveals the endogenization of parvovirus-related DNA sequences (PRDs) in the S. chinensis genome, which could play a role in environmental adaptations. We demonstrated the characterization and classification of cytochrome P450s in the genome assembly, which are functionally crucial for sap-feeding insects and have roles in detoxification and insecticide resistance. This genome assembly also revealed the whole genome duplication events in S. chinensis, which can be considered in comparative evolutionary analysis. Our work represents a reference genome for gall-forming aphids that could be used for comparative genomic studies between galling and non-galling aphids and provides the first insight into the endogenization of PRDs in the genome of galling aphids. It also provides novel genetic information for future research on gall-formation and insect-plant interactions.


Assuntos
Afídeos , Parvovirus , Rhus , Animais , Afídeos/genética , Rhus/genética , Sequência de Bases , Cromossomos/genética , Parvovirus/genética
15.
J Pharmacol Exp Ther ; 388(2): 568-575, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050084

RESUMO

Burn injuries including those caused by chemicals can result in systemic effects and acute lung injury (ALI). Cutaneous exposure to Lewisite, a warfare and chemical burn agent, also causes ALI. To overcome the limitations in conducting direct research on Lewisite-induced ALI in a laboratory setting, an animal model was developed using phenylarsine oxide (PAO) as a surrogate for Lewisite. Due to lack of a reliable animal model mimicking the effects of such exposures, development of effective therapies to treat such injuries is challenging. We demonstrated that a single cutaneous exposure to PAO resulted in disruption of the alveolar-capillary barrier as evidenced by elevated protein levels in the bronchoalveolar lavage fluid (BALF). BALF supernatant of PAO-exposed animals had increased levels of high mobility group box 1, a damage associated molecular pattern molecule. Arterial blood-gas measurements showed decreased pH, increased PaCO2, and decreased partial pressure of arterial O2, indicative of respiratory acidosis, hypercapnia, and hypoxemia. Increased protein levels of interleukin (IL)-6, CXCL-1, CXCL-2, CXCL-5, granulocyte-macrophage colony-stimulating factor, CXCL-10, leukemia inhibitory factor, leptin, IL-18, CCL-2, CCL-3, and CCL-7 were observed in the lung of PAO-exposed mice. Further, vascular endothelial growth factor levels were reduced in the lung. Pulmonary function evaluated using a flexiVent showed a downward shift in the pressure-volume loop, decreases in static compliance and inspiratory capacity, increases in respiratory elastance and tissue elastance. These changes are consistent with an ALI phenotype. These results demonstrate that cutaneous PAO exposure leads to ALI and that the model can be used as an effective surrogate to investigate vesicant-induced ALI. SIGNIFICANCE STATEMENT: This study presents a robust model for studying ALI resulting from cutaneous exposure to PAO, a surrogate for the toxic vesicating agent Lewisite. The findings in this study mimic the effects of cutaneous Lewisite exposure, providing a reliable model for investigating mechanisms underlying toxicity. The model can also be used to develop medical countermeasures to mitigate ALI associated with cutaneous Lewisite exposure.


Assuntos
Lesão Pulmonar Aguda , Arsenicais , Irritantes , Camundongos , Animais , Irritantes/efeitos adversos , Modelos Animais de Doenças , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Líquido da Lavagem Broncoalveolar/química , Interleucina-6/metabolismo
17.
Curr Pharm Des ; 30(1): 10-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38155468

RESUMO

Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.


Assuntos
Síndrome Metabólica , Plantas Medicinais , Humanos , Plantas Medicinais/química , Síndrome Metabólica/tratamento farmacológico , Qualidade de Vida , Antioxidantes , Verduras , Inflamação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
19.
Bioinformation ; 19(5): 633-637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886153

RESUMO

Obesity is a major metabolic disorder in developed countries, with an increasing number of people affected globally. PPARγ is primarily expressed in adipose tissue with a lesser extent in other tissues. PPARγ is an important mediator in several metabolic processes such as insulin sensitivity and adipogenesis. Because of its critical role in these processes, PPARγ is regarded as a critical target for therapeutic intervention in obesity treatment. A library of 2,320 bioactive compounds was screened insilico to identify compounds that strongly interact with the PPARγ protein. The compounds Z1982689600, Z2235802137, Z2235801970, and Z2037275165, demonstrated notable binding affinity values towards the PPARγ protein with values of -12.1, -11.7, -11.4, and -11.4 kcal/mol, respectively, which were higher than the binding affinity value observed for the control compound (-10.5 kcal/mol). These compounds bind tightly to PPARγ and have several amino acid residue interactions in common with the control compound. In addition, these compounds meet the ADMET criteria. These compounds could aid in the development of PPARγ antagonists for the management of obesity associated diabetes. However, additional research is needed to optimize their efficacy in wet laboratory conditions.

20.
Front Plant Sci ; 14: 1232938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877083

RESUMO

CRISPR-Cas9, the "genetic scissors", is being presaged as a revolutionary technology, having tremendous potential to create designer crops by introducing precise and targeted modifications in the genome to achieve global food security in the face of climate change and increasing population. Traditional genetic engineering relies on random and unpredictable insertion of isolated genes or foreign DNA elements into the plant genome. However, CRISPR-Cas based gene editing does not necessarily involve inserting a foreign DNA element into the plant genome from different species but introducing new traits by precisely altering the existing genes. CRISPR edited crops are touching markets, however, the world community is divided over whether these crops should be considered genetically modified (GM) or non-GM. Classification of CRISPR edited crops, especially transgene free crops as traditional GM crops, will significantly affect their future and public acceptance in some regions. Therefore, the future of the CRISPR edited crops is depending upon their regulation as GM or non-GMs, and their public perception. Here we briefly discuss how CRISPR edited crops are different from traditional genetically modified crops. In addition, we discuss different CRISPR reagents and their delivery tools to produce transgene-free CRISPR edited crops. Moreover, we also summarize the regulatory classification of CRISPR modifications and how different countries are regulating CRISPR edited crops. We summarize that the controversy of CRISPR-edited plants as GM or non-GM will continue until a universal, transparent, and scalable regulatory framework for CRISPR-edited plants will be introduced worldwide, with increased public awareness by involving all stakeholders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...